Elucidation of the physicochemical properties and potency of siRNA-loaded small-sized lipid nanoparticles for siRNA delivery.
نویسندگان
چکیده
Because nanoparticles with diameters less than 50nm penetrate stromal-rich tumor tissues more efficiently, the synthesis of small-sized nanoparticles encapsulating short interfering RNA (siRNA) is important in terms of realizing novel siRNA medicine for the treatment of various cancers. Lipid nanoparticles (LNPs) are the leading systems for the delivery of siRNA in vivo. Limit size LNPs were successfully synthesized using a microfluidic mixing technique. However, the physicochemical properties and potential for in vivo siRNA delivery of the limit-size LNPs have not been examined in detail. In the present study, we prepared LNPs with different diameters from 32 to 67nm using a microfluidic mixing devise and examined the physicochemical properties of the particles and the potential for their use in delivering siRNA in vitro and in vivo to liver. Reducing the size of the LNPs causes poor-packing and an increased surface area, which result in their instability in serum. Moreover, it was revealed that the ability of endosomal escape (cytosolic siRNA release) of the smaller LNPs is subject to inhibition by serum compared to that of larger counterparts. Taken together, an increase in packing and avoiding the adsorption of serum components are key strategies for the development of next-generation highly potent and small-sized LNPs.
منابع مشابه
Formulation of a therapeutic cationic liposome-siRNA complex for development to fight osteosarcoma
Introdution: Cationic liposomes have been presented for gene delivery as an alternative vector instead of viral vectors. A major challenge associated with siRNA delivery is the instability of liposomes, which is still a serious problem. The aim of this study was to provide an appropriate formulation to overcome this instability. Methods: In the present study (Scientific-Fundamental, Experiment...
متن کاملNanolipoparticles-mediated MDR1 siRNA delivery: preparation, characterization and cellular uptake
Objective(s): Lipid-based nanoparticles (NLP) are PEGylated carriers composed of lipids and encapsulated nucleic acids with a diameter less than 100 nm. The presence of PEG in the NLP formulation improves the particle pharmacokinetic behavior. The purpose of this study was to prepare and characterize NLPs containing MDR1 siRNA and evaluate their cytotoxicity and cellular uptake. MDR1 siRNA coul...
متن کاملEffect of different mass ratio of PLA: PEG segments in PLA-PEG-PLA copolymers on the physicochemical characterization and DNA release profile
Background: Adapting controlled release technologies to the delivery of DNA has the great potential to overcome extracellular barriers that limit gene delivery. This study investigates the effect of different mass ratio of PLA: PEG in the various tri block poly (lactic acid)-poly (ethylene glycol) - Poly (lactic acid) copolymer (PLA-PEG-PLA) on the properties of the resulting nanoparticles. Me...
متن کاملFormulation Strategies, Characterization, and In Vitro Evaluation of Lecithin-Based Nanoparticles for siRNA Delivery
The aim of the present work was to take advantage of lecithin's biocompatibility along with its physicochemical properties for the preparation of lecithin-based nanocarriers for small interfering RNA (siRNA) delivery. Water lecithin dispersions were prepared in different conditions, loaded with siRNA at different N/P ratios, and evaluated for loading capacity. The most appropriate ones were the...
متن کاملSmall interfering RNA; principles, applications and challenges--
Gene silencing using RNAi (RNA interference), has recently been used as a successful laboratory technique in determining the function and control of gene expression and provides a wide range of applications in molecular biology and gene therapy. RNAi is a method of suppressing gene expression. In this direction, a single-stranded RNA molecule of about 21–23 nucleotides, called siRNA (small inte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of controlled release : official journal of the Controlled Release Society
دوره 229 شماره
صفحات -
تاریخ انتشار 2016